Per-Pixel Feedback for improving Semantic Segmentation

نویسنده

  • Aditya Ganeshan
چکیده

Semantic segmentation is the task of assigning a label to each pixel in the image.In recent years, deep convolutional neural networks have been driving advances in multiple tasks related to cognition. Although, DCNNs have resulted in unprecedented visual recognition performances, they offer little transparency. To understand how DCNN based models work at the task of semantic segmentation, we try to analyze the DCNN models in semantic segmentation. We try to find the importance of global image information for labeling pixels. Based on the experiments on discriminative regions, and modeling of fixations, we propose a set of new training loss functions for fine-tuning DCNN based models. The proposed training regime has shown improvement in performance of DeepLab Large FOV(VGG-16) Segmentation model for PASCAL VOC 2012 dataset. However, further test remains to conclusively evaluate the benefits due to the proposed loss functions across models, and data-sets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Augmented Feedback in Semantic Segmentation Under Image Level Supervision

Training neural networks for semantic segmentation is data hungry. Meanwhile annotating a large number of pixel-level segmentation masks needs enormous human effort. In this paper, we propose a framework with only image-level supervision. It unifies semantic segmentation and object localization with important proposal aggregation and selection modules. They greatly reduce the notorious error ac...

متن کامل

Semantic image understanding : from pixel to word

The aim of semantic image understanding is to reveal the semantic meaning behind the image pixel. We categorize semantic image understanding into two broad categories: pixel-level and image-level semantic image understanding. While pixel-level image understanding aims to obtain the semantic meaning of each pixel, image-level understanding aims to obtain the semantic meaning of the whole image, ...

متن کامل

Contour-aware network for semantic segmentation via adaptive depth

Semantic segmentation has been widely investigated for its important role in computer vision. However, some challenges still exist. The first challenge is how to perceive semantic regions with various attributes, which can result in unbalanced distribution of training samples. Another challenge is accurate semantic boundary determination. In this paper, a contour-aware network for semantic segm...

متن کامل

Adaptive Affinity Field for Semantic Segmentation

Existing semantic segmentation methods mostly rely on per-pixel supervision, unable to capture structural regularity present in natural images. Instead of learning to enforce semantic labels on individual pixels, we propose to enforce affinity field patterns in individual pixel neighbourhoods, i.e., the semantic label patterns of whether neighbouring pixels are in the same segment should match ...

متن کامل

BiSeg: Simultaneous Instance Segmentation and Semantic Segmentation with Fully Convolutional Networks

We present a simple and effective framework for simultaneous semantic segmentation and instance segmentation with Fully Convolutional Networks (FCNs). The method, called BiSeg, predicts instance segmentation as a posterior in Bayesian inference, where semantic segmentation is used as a prior. We extend the idea of position-sensitive score maps used in recent methods to a fusion of multiple scor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1712.02861  شماره 

صفحات  -

تاریخ انتشار 2017